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Lattice QCD calculations
have become essential to |
some of the central goals of ,I
the HEP experimental
program. ;
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M. Ciuchini hep-ph/0307195.

E. g., potential to improve the p-n plane is huge.
Of the five best constraints:

K K bar mixing currently dominated by lattice uncertainties.
B B bar currently dominated by lattice uncertainties.

Bs Bs bar will be dominated by lattice uncertainties.

Vub: (B—nlv) will be dominated by lattice uncertainties.

sin2f: dominated by experimental uncertainty.
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Recent big progress with unquenched improved
staggered fermions.
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C.T.H. Davies et al.,
Phys.Rev.Lett.92:022001,2004, hep-lat/0304004.

What about slightly more complicated quantities?
Do other light quark methods agree?
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The progress was written up in nice articles in

Physics Today and Nature.

High-Precision Lattice QCD Confronts Experiment

C. T. H. Davies," E. Follana," A. Gray," G. P. Lepage,? Q. Mason,?

M. Nobes,® J. Shigemitsu,® H. D. Trottier,?

and M. Wingate!

news and views

Lattice window on strong force

lan Shipsey

A long-awaited breakthrough has been made in lattice quantum
chromodynamics — a means of calculating the effect of the strong force
between sub-atomic particles that could, ultimately, unveil new physics.

(HPQCD and UKQCD Collaborations)
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We argue that high-precision lattice QCD is now possi
improved staggered quark discretization. We compare a wic
in QCD with experiment, and find agleement to within stat
We also present a new determination of aW(Z\I/), we obt:
of this breakthrough for phenomenology and, in particulal

PACS numbers: 11.15.Ha,12.38.Aw,12.38.Gc

For almost thirty years precise numerical studies of trollec
nonperturbative QCD, formulated on a space-time lat- Symai
tice, have been stymied by our inability to include the the me
effects of realistic quark vacuum polarization. In this more ¢
paper we present detailed evidence of a breakthrough compé
that may now permit a wide variety of nonperturbative are po
QCD calculations including, for example, high-precision  exact
B and D meson decay constants, mixing amplitudes, and ~ simule

semi-leptonic form factors—all quantities of great im- d mas
portance in current experimental work on heavy-quark are nc
physics.  The breakthrough comes from a new dis- a relia

cretization for light quarks: Symanzik-improved stag-

gered quarks [1, 2, 3,4, 5, 6, 7, 8]. 'In b

with t

Quark vacuum polarization is by far the most expen- pertur
sive ingredient in a QCD simulation. It is particularly dif- cent.

ficult to simulate with small quark masses, such as u and iment:
d masses. Consequently, most lattice QCD (LQCD) sim- restric
ulations in the past have either omitted quark vacuum sured
polarization (“quenched QCD”), or they have included  with e
effects for only u and d quarks, with masses 10-20 times unstal
larger than the correct values. This results in uncon- lepton
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Lattice Quantum Chromodynamics
Comes of Age
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Figure 1 Bottom’s up. a, An idealized representation of the decay of a free bottom quark into an up
quark. In the standard model of particle physics, the process occurs through the weak force, mediated
by a Wparticle, and also produces an electron and an anti-neutrino. b, In the real world, however,
there is no such thing as a free quark. Instead, a bottom quark exists in a bound state with other
quarks — such as in a Bmeson, bound by the exchange of gluons to an anti-quark. Gluons and quark
pairs are constantly emitted then reabsorbed; only a fraction of this ‘sea’ of particles is shown here.

¢, So the realistic picture of the decay of a bottom quark is complex. The B meson — a bottom quark
and anti-quark pair — becomes a pion (an up quark and an anti-quark), but the route is obscured by
the mass of gluons and quarks (of which, again, only a fraction are shown). Calculating the details of
the process is fiendishly complicated. But new advances in lattice quantum chromodynamics mean
that precise theoretical correction factors can be worked out, and the problem effectively reduced to

the simple process shown in a.

would be no matter in the Universe today. So
how did that asymmetry arise?

If heavy particles that existed in the early
Universe decayed preferentially into matter
over antimatter, that could have created the
matter excess. In the standard model, two
types of quark, bottom and strange, do decay
asymmetrically. But this effect alone s far too
small to account for the asymmetry. How-
ever, there are many theories that predict
the existence of other, massive particles that
could readily produce the asymmetry. And

RY 2004 | www.nature.com/nature

©2004 NaturePublishing Group

»
W particle Anti-neutrino

Electron

Up quark

——— Anti-quark

——Gluon

Electron

Pion

because of the connection between asym-
metry and mass, these theories also address
other puzzles, such as why electrons are
almost 10,000 times lighter than bottom
quarks.

Searching for evidence of these particles
can be done directly or indirectly: powerful
accelerators, reaching ever higher energies,
could create these mysterious particles; or
thereis the precision approach of looking for
subtle deviations in the properties of known
particles, influenced by the unknown. If

591



These are examples of some of the “golden quantities of
lattice QCD: single stable meson processes. Other examples:

KK bar, BB bar, and BsBs bar mixing,
B—xlv, B—Dlv,

D—-xlv, D—Klv,

K—=mlv.

Example of current work : D—=nlv.

Cleo-c will measure fD /D—xlv and fD S/D—'Klv to 2%. Interesting

and rare CKM independent test of lattice heavy-light methods.

One-loop perturbative calcutions (in progress)
will leave 8-10% perturbative uncertainties.
Goal: make all other uncertainty significantly
smaller than this.

DK

f ~""=0.75 f+Dp i=o.63. (Preliminary!)

M. Okamoto et al., at Lattice 2003, hep-1at/0309107.
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Fermilab’s lattice work is part of DoE’s national effort to
establish computational infrastructure for lattice QCD
initiated under the SciDAC program.

US “Lattice QCD Executive Committee” (Sugar, chair, Brower, Christ,
Creutz, Mackenzie, Negele, Rebbi, Sharpe, Watson) reports to DoE on
plans and needs of US lattice QCD.

$2M/year, three-year SciDAC grant will probably be extended through ‘os.

'Two major components of national program:

Nonlocal communication
through switch, well
understood user environment.

Large, tightly coupled
clusters (Fermilab/JLab):

Local, highly scalable

communication.

QCDOC
(Columbia/BNL):

# Paul Mackenzie




Fermilab lattice cluster effort
is led by Don Holmgren.

The clusters are

currently housed in the
New Muon Lab.

The 172 node Pentium 4 cluster.
-100 GFlops.

# Paul Mackenzie
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Fermilab Lattice Gauge Theory Computational Facility
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Fermilab Fermilab at Work Theoretical Physics Dept.

Distributed Svstesms Projects Group [

Fermilab Lattice Gauge Theory Cumputaﬁonal Facility

Syaterns [

Dept. Fermilab € Division

Fermilab operates large clusters of computers for lattice quantum chromodynarmics, as part of the national
computational infrastructure for lattice QCD established by the Department of Energy. Their goal is the
understanding of the strong dynamics of quarks and gluons, which is beyond the reach of the traditional
perturbative methods of quantum field theory. A central goal of the groups using the computers is the
accomplishment of the calculations required to extract from experiment the fundamental parameters of the

Standard Model of particle physics.

LQCD System Status
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Job list a mixture of perturbation

JE
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theory and valence calculation
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and analysis;
1 node, 4 node, 16 node jobs, etc.
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At February, 2004 HEPAP meeting, Bob Sugar, in a well-
received talk, reported the “absolute minimum support

required for health of field”.

Our answer: $3M/year:

2004 2005 20006
QCDOC $sM, 5 TF $o
HEP Clusters $1 M, 1 TF $3 M, 6TF?

DoE-HEP response: $2M/year.

Discussions with Nuclear and ASCR are ensuing.
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